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We aim at finding an optimal design for an interior permanent magnet electric motor by means of a sensitivity-based topology
optimization method. The gradient-based ON/OFF method, introduced by M. Ohtake, Y. Okamoto and N. Takahashi in [1], has been
successfully applied to optimization problems of this form. We show that this method can be improved by considering the mathematical
concept of topological derivatives. Topological derivatives for optimization problems constrained by linear partial differential equations
(PDEs) are well-understood, whereas little is known about topological derivatives in combination with nonlinear PDE constraints. We
derive the topological derivative for an optimization problem constrained by the equation of nonlinear two-dimensional magnetostatics
and show how this information can be used to obtain optimal designs.

Index Terms—design optimization, permanent magnet motors, rotating machines, sensitivity analysis

I. INTRODUCTION

TOPOLOGY OPTIMIZATION methods originate from
mechanical engineering, but have found more and more

applications in electromagnetics in recent years. They aim at
finding optimal designs. More precisely, they seek for the
distribution of material in a design subdomain that minimizes a
given design-dependent objective functional J . The ON/OFF
method was introduced in [2] and adopted to a sensitivity-
based method in [1]. It is a topology optimization method that
improves the design of a given device using information about
the sensitivity of the cost functional with respect to a local
perturbation of the magnetic reluctivity. It was shown in [3]
that, in the case of a linear state equation, this sensitivity is
equivalent to the mathematical concept of topological deriva-
tives. For the optimization of electrical machines, we are faced
with a nonlinear state equation. In this case, the application of
the ON/OFF method generalizes directly, whereas the formula
for the topological derivative has been an open problem.

In this work, we compare the ideas of the ON/OFF method
and the topological derivative and show that the sensitivity
used in the ON/OFF method is not the right quantity to be
considered for topology optimization. We derive the formula
for the topological derivative in the case of nonlinear material
behavior and address implementational issues. As a model
problem we consider the optimization of an interior permanent
magnet (IPM) brushless electric motor, for which we want to
achieve a smoother rotation. We will show numerical results
obtained by the topological derivative.

II. PROBLEM DESCRIPTION

We consider an IPM brushless electric motor as depicted
in Fig. 1 that consists of ferromagnetic material, permanent
magnets, coil areas and air regions. For our special application
we do not consider any electric current induced in the coils.
We aim at minimizing the total harmonic distortion (THD) of

the radial component of the magnetic flux density in the air gap
(see Fig. 2) by finding the optimal distribution of ferromagnetic
material in the design regions of the rotor (striped areas in
Fig. 1). This is realized by minimizing the distance between
this radial component Br and a prescribed sine curve Bd

r in
the L2 norm. The optimization problem looks as follows:

min
Ωf

J (u) := ‖Br(u)−Bd
r‖2L2(Γ0) (1)

s.t.
{
−div

(
ν(|∇u|)∇u−M⊥) = 0 in Ω

u = 0 on ∂Ω
(2)

Here, we consider the setting of two-dimensional magnetostat-
ics where the magnetic flux density is only acting in the x1-x2

plane, i.e., B = (B1, B2, 0)T , and Ω ⊂ R2. The state variable
u = u(x1, x2) denotes the third component of the magnetic
vector potential, i.e., B(u) = curl

(
(0, 0, u)T

)
. Note that

the magnetic vector potential (0, 0, u)T satisfies the Coulomb
gauge condition. Further, M⊥ = (−M2,M1)T denotes the
perpendicular of the permanent magnetization which vanishes
outside the permanent magnets, and ν represents the magnetic
reluctivity, which is a nonlinear function ν̂ in the ferromagnetic
subdomain Ωf (brown area in Fig. 1) and a constant ν0 else,
i.e.,

ν(|∇u|) =

{
ν̂(|∇u|) x ∈ Ωf

ν0 x ∈ Ω \ Ωf .
(3)

Note that J depends on Ωf via the solution u of (2).

III. ON/OFF METHOD

The ON/OFF method is an efficient method for finding
optimal designs in electromagnetics. The method is based on
the fact that the difference between having iron or air in a
spatial point is only reflected in the value of the magnetic
reluctivity ν which is a constant ν0 in the air subdomain
and a nonlinear function ν̂ in the ferromagnetic material.



This nonlinear function ν̂ usually attains values that are much
smaller than ν0. The idea is to compute the sensitivity of the
objective function with respect to a local perturbation of the
magnetic reluctivity in one element of the finite element (FE)
mesh,

∂J
∂νk

, (4)

where νk is the magnetic reluctivity in element k. Whenever
this sensitivity is negative, assuming monotonicity of J with
respect to νk, a larger value for νk would yield a smaller value
for J , which is realized by switching the element OFF, i.e., by
setting it to air. On the other hand, if the sensitivity is positive,
switching the element ON, i.e., setting it to iron, would be
favorable for reducing the cost functional J .

This method has, amongst other applications, been success-
fully applied to the optimization of electromagnetic shield-
ing [1], [4] and electric motors [5]. However it is based on
heuristics for the following reason: The sensitivity ∂J

∂νk
just

gives information about the behavior of J for a small variation
of the magnetic reluctivity. When changing the material, the
reluctivity is switched from ν̂ directly to ν0 (or vice versa). The
quantity to be considered for that scenario is the topological
derivative.

IV. TOPOLOGICAL DERIVATIVE

Topological derivatives were introduced in a mathematically
rigorous way in [6]. The topological derivative of a domain-
dependent functional J = J (Ω) at a point x0 describes its
sensitivity with respect to a perturbation of the domain around
that point. It is defined as the quantity G(x0) satisfying a
topological asymptotic expansion of the form

J (Ωε)− J (Ω) = εdG(x0) + o(εd) as ε→ 0. (5)

Here, Ωε denotes the perturbed configuration where the ma-
terial property in a small neighborhood of the spatial point
x0 is switched from iron to air or vice versa, and d is the
space dimension (here: d = 2). It was shown in [3] that the
sensitivity (4) used in the ON/OFF method is equivalent to the
topological derivative in the case of a linear state equation.
However, little has been known about topological derivatives
in combination with nonlinear state equations (see, e.g., [7]).

We derive the topological derivative for the nonlinear prob-
lem (1)-(2) and show its advantages over the ON/OFF method.
We point out that the topological derivative provides more
accurate sensitivity information. Furthermore, we show that
the ON/OFF method is hardly able to remove and re-introduce
material in the course of an optimization process, which is
possible by means of the topological derivative.

The topological derivative can be split into a linear term
that resembles the sensitivities used in the ON/OFF method,
and a new term which accounts for the nonlinearity of the
equation. This term is neglected in the ON/OFF method. We
will apply a level-set based algorithm, see [8], to find the
optimal distribution of ferromagnetic material in the design
regions of the electric motor introduced in Section II. Finally
we will show numerical results.

Fig. 1. Electric motor with different subdomains.

0 50 100 150 200 250 300 350

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

angle along air gap

ra
d
ia

l 
co

m
p
o
n

e
n
t 

o
f 

m
a
g
n

e
ti

c 
fl
u
x
 d

e
n

si
ty

 (
V

s/
m

²)

Fig. 2. Radial component of magnetic flux density Br(u) along the air gap
for initial design (blue) vs. desired sine curve Bd

r (green).
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